Example classification models (produced using GP) and the resulting confusion matrices for the Thyroid data set.
Please note: All variables were linearly scaled to the interval [0;100], the threshold values are therefore also values between 0 and 100.
10-fold CV set 0: class(t) = IF(>=(Log(Log(-(Log([2.643*Var16(t)])|[1.000*Var12(t)])))| IF(>=(-(-([1.000*Var17(t)]|[1.000*Var16(t)])|+(-0.141724|[1.000*Var18(t)]))| -(Sig([1.000*Var12(t)])|^([1.000*Var18(t)]| [1.000*Var7(t)])))|ThenElse(-(Sin( [-2.040*Var16(t)])|Sin([1.973*Var18(t)]))|IF(>=([1.973*Var18(t)] |49.864966)| ThenElse([2.643*Var16(t)]|[-2.040*Var16(t)])))))|ThenElse(+(-(+(Cos( [0.427*Var18(t)])|-([1.000*Var17(t)]|1.287233))| Sqrt(+([3.955*Var20(t)]| [11.739*Var16(t)])))|+(+(*([0.083*Var2(t)]| [0.427*Var18(t)])|Cos( [0.427*Var18(t)]))|+(*([-0.045*Var20(t)]| [1.000*Var18(t)])|[3.955*Var20(t)])))| +(+(-2.541577|e^(/([1.973*Var18(t)]| [0.427*Var18(t)])))|Cos(+(Sin(49.864966)| ^([1.000*Var16(t)]|6.173179)))))) Thresholds: [33.45; 75.25] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 137 | 9 | 5 | Est. [0] | 18 | 3 | 0 | Class [1] | 9 | 337 | 14 | Class [1] | 0 | 15 | 0 | [2] | 2 | 2 | 5965 | [2] | 0 | 2 | 682 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.37% | 99.31% 10-fold CV set 1: class(t) = *(+(*(-(-(Cos([1.000*Var16(t)])|Cos([-4.991*Var16(t)]))| *(/( [1.000*Var7(t)]| 6.767502)|[-0.214*Var16(t)]))|*(*(Sqrt([1.000*Var16(t)])| 3.886609)|+(Cos([1.000*Var16(t)])|2.302652)))|-(+(/(+([1.000*Var16(t)]| [1.000*Var2(t)])|e^([-0.214*Var16(t)]))|-(+([-4.991*Var16(t)]| 108.231865)|+(0.000000| [1.000*Var2(t)])))|-(*(/(2.302652|1.457826)|+( [1.000*Var16(t)]|3.886609)) |*(*([-4.991*Var16(t)]|[-0.214*Var16(t)])| Sqrt([1.000*Var16(t)])))))|IF(<=(-(+(Sqrt([1.000*Var7(t)])|+ ([1.000*Var11(t)]|[8.693*Var20(t)]))|+(-(0.000000|[1.006*Var20(t)])| -(92.692883|0.000000)))|-(-(1.457826|+(0.000000| [1.000*Var4(t)]))|/(-( [-4.991*Var16(t)]|-4.030073)|^([1.000*Var16(t)]| [8.693*Var20(t)]))))| ThenElse(e^(-(Sin([-4.991*Var16(t)])| [1.000*Var16(t)]))|e^([-0.214*Var16(t)])))) Thresholds: [39.225; 72.7] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 149 | 0 | 10 | Est. [0] | 15 | 0 | 1 | Class [1] | 2 | 332 | 45 | Class [1] | 0 | 36 | 1 | [2] | 0 | 0 | 5942 | [2] | 0 | 0 | 667 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.12% | 99.72% 10-fold CV set 2: class(t) = +(+(+(IF(>=(+([2.933*Var5(t)]|[4.635*Var20(t)])|^([1.000*Var16(t)]| 32.512281))|ThenElse(104.077790|+(-5.259905|[3.901*Var20(t)])))|IF(>=(+( [1.000*Var17(t)]|[1.000*Var17(t)])|+ ([1.000*Var16(t)]|[4.635*Var20(t)]))| ThenElse(+([1.000*Var2(t)]| [4.635*Var20(t)])|-4.370451)))|IF(>=(^(/( [1.000*Var16(t)]| [1.000*Var17(t)])|+([1.000*Var8(t)]|[0.373*Var7(t)]))| *(Sqrt([4.635*Var20(t)])|Log([1.000*Var16(t)])))|ThenElse([1.000*Var16(t)]| +(+(-5.259905|-4.370451)|+(-5.259905|[0.611*Var7(t)])))))|IF(>=(+(/(+( [1.000*Var10(t)]|0.000000)|/([1.000*Var16(t)]|[1.000*Var2(t)]))|+(Sqrt( [2.880*Var20(t)])|+([1.000*Var4(t)]|-4.370451)))|Cos(^(Log([1.000*Var16(t)])|- (-3.260221|[1.000*Var13(t)]))))|ThenElse(*(^(Sqrt([0.079*Var20(t)])|+( [1.000*Var14(t)]|-3.260221))|+(+([1.000*Var2(t)]|[1.000*Var17(t)])|+ ([1.000*Var17(t)]|[1.000*Var16(t)])))|/(+(+([1.000*Var8(t)]| [0.611*Var7(t)])|+ ([1.000*Var8(t)]|[0.373*Var7(t)]))|-(+([2.620*Var20(t)]|[1.000*Var10(t)])| -(6.267298|[1.000*Var13(t)])))))) Thresholds: [32.425; 76.475] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 140 | 7 | 2 | Est. [0] | 17 | 0 | 0 | Class [1] | 5 | 316 | 27 | Class [1] | 4 | 45 | 3 | [2] | 0 | 0 | 5983 | [2] | 0 | 0 | 651 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.37% | 99.03% 10-fold CV set 3: class(t) = +(+(IF(<=([-0.37921775*Var16(t)]|+(-0.43533937| [-2.76239437*Var7(t)]))|ThenElse( +([2.64778823*Var7(t)]| -0.91019582)|[1.26036869*Var19(t)]))|IF(OR(>=(-0.29808521|-0.96359298)| >=([1.88284005*Var12(t)]|[0.14167759*Var6(t)]))| ThenElse([0.16761998*Var2(t)]| -0.73643814))) |+([0.82477057*Var17(t)]|+ ([-0.31729187*Var16(t)]|+(+([3.68276008*Var20(t)]|[-0.04266986*Var17(t)])| -(4.50479669|2.31342641))))) Thresholds: [43.125; 89.025] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 136 | 4 | 10 | Est. [0] | 16 | 1 | 0 | Class [1] | 9 | 331 | 231 | Class [1] | 3 | 28 | 23 | [2] | 2 | 3 | 5754 | [2] | 0 | 1 | 648 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 96.00% | 96.11% 10-fold CV set 4: class(t) = IF(<=(/(-(*(-0.507917|[1.000*Var8(t)])|[0.875*Var16(t)])|-( [0.253*Var2(t)]|Log([0.875*Var16(t)])))|+(*(*(+([1.000*Var4(t)]| [0.720*Var7(t)])|Sin([0.875* Var16(t)]))|/([-2.651*Var16(t)]|-( [0.875*Var16(t)]|[1.000*Var20(t)])))|+([-0.548*Var16(t)]|e^(e^( [9.284*Var12(t)])))))|ThenElse(-(-(-(-(0.041530|-100.301158)|0.000000)| Sin(12.938045))|/(/([-2.651*Var16(t)]|3.143818)|-([9.284*Var12(t)]| [1.000*Var20(t)])))|+(+(*(+([1.000*Var2(t)]|[0.720*Var7(t)])|Sin(12.938045))|+ (*([0.012*Var17(t)]|[1.000*Var17(t)])|[-0.548*Var16(t)]))|-(-(-([5.281*Var20(t)] |[0.856*Var20(t)])|[0.856*Var20(t)])|+(Cos([0.780*Var20(t)])|-([0.856*Var20(t)] |[1.000*Var17(t)])))))) Thresholds: [35.55; 77.95] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 134 | 8 | 5 | Est. [0] | 15 | 4 | 1 | Class [1] | 13 | 309 | 33 | Class [1] | 1 | 46 | 4 | [2] | 1 | 1 | 5976 | [2] | 2 | 0 | 647 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.06% | 98.33% 10-fold CV set 5: class(t) = ^(IF(>=(+(+(^(90.826907|[1.350*Var16(t)])|+([1.350*Var16(t)]| [1.000*Var3(t)]))|-(Cos([1.000*Var9(t)])|*([1.000*Var5(t)]| [0.428*Var20(t)])))|^(^(+([1.000*Var2(t)]|98.567908)|Cos([-0.239*Var16(t)])) |+(+([1.000*Var12(t)]|[1.000*Var4(t)])|+([1.000*Var6(t)]|1.584749))))| ThenElse(+(-(+(-3.514523|[3.551*Var20(t)])|-([0.428*Var20(t)]| [1.000*Var17(t)]))|IF(<=([1.813*Var7(t)]|[2.014*Var16(t)])| ThenElse([0.442*Var2(t)]|60.781038)))|+(98.567908|-(-(1.584749|[-0.239*Var16(t)])| ^([1.000*Var16(t)]|1.584749)))))|Sig(+(^(+(+( [2.496*Var20(t)]|0.000000)|+([-0.239*Var16(t)]|0.000000))|Cos(55.840663))| *(Cos(-([1.000*Var9(t)]|[0.428*Var20(t)]))| *(1.193392|+([1.350*Var16(t)]|[1.350*Var16(t)])))))) Thresholds: [35.65; 79.5] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 145 | 4 | 5 | Est. [0] | 15 | 1 | 1 | Class [1] | 5 | 326 | 29 | Class [1] | 1 | 34 | 5 | [2] | 0 | 3 | 5963 | [2] | 0 | 0 | 663 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.29% | 98.89% 10-fold CV set 6: class(t) = IF(<=(IF(<=(+([0.306*Var7(t)]|e^([1.000*Var12(t)]))|-(-( [4.358*Var20(t)]|0.587528)|Sqrt([0.500*Var16(t)])))|ThenElse(Cos(/ ([1.000*Var4(t)]|[1.273*Var17(t)]))|[1.000*Var4(t)]))|IF(<=(+( [7.775*Var20(t)]|+([1.273*Var17(t)]|[ 2.186*Var20(t)]))|+(-(0.000000| -5.218301)|98.760572))|ThenElse([1.000*Var8(t)]|IF(>=(0.000000| [1.000*Var2(t)])|ThenElse([0.306*Var7(t)]|[7.775*Var20(t)])))))| ThenElse(IF(<=(+([0.500*Var16(t)]| [1.000*Var12(t)])|-(-([4.358*Var20(t)]| 0.587528)|[1.000*Var12(t)]))|ThenElse(+(+(0.587528|98.760572)|0.587528)| [1.000*Var12(t)]))|IF(<=(+([0.500*Var16(t)]|e^([2.353*Var16(t)]))|+( Sqrt([1.000*Var4(t)])|15.374653))|ThenElse(+(+(0.587528|98.760572)|0.587528)|+(+( [1.273*Var17(t)]| [2.186*Var20(t)])|/ ([3.649*Var18(t)]|9.638362)))))) Thresholds: [36.425; 80.1] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 145 | 9 | 4 | Est. [0] | 11 | 0 | 1 | Class [1] | 8 | 325 | 26 | Class [1] | 1 | 33 | 1 | [2] | 0 | 0 | 5963 | [2] | 1 | 1 | 671 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.27% | 99.31% 10-fold CV set 7: class(t) = +(^(+(+(+(Log(8.775252)|+([1.440*Var20(t)]|8.775252))|*(Sin( [0.158* Var20(t)])|-(8.775252|[1.000*Var16(t)])))|e^(Sin(+([0.158*Var20(t)]| [1.000*Var16(t)]))))|Sig(+(+(Sin([-0.421*Var16(t)])|+([0.086*Var4(t)]| [1.285*Var20(t)]))|+(+([-1.893*Var16(t)]|[1.000*Var8(t)])| Sin([1.000*Var16(t)])))))|IF(<=(Sig(+(-(59.824802|[1.000*Var2(t)])| -(8.775252|[1.000*Var19(t)])))|+(Log(+([1.000*Var2(t)]|8.775252))|+(e^( [1.000*Var7(t)])|+([-1.893*Var16(t)]|0.000000))))|ThenElse(+(59.824802| -(2.810579|[0.158*Var20(t)]))|+(*(*([0.249*Var2(t)]|[0.158*Var20(t)])| [0.158*Var20(t)])|+(*([0.158*Var20(t)]|[0.158*Var20(t)])| +([0.086*Var4(t)]|[1.000*Var17(t)])))))) Thresholds: [41.575; 74.575] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 140 | 11 | 5 | Est. [0] | 9 | 3 | 3 | Class [1] | 13 | 305 | 30 | Class [1] | 3 | 49 | 4 | [2] | 1 | 0 | 5975 | [2] | 0 | 0 | 649 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.07% | 98.19% 10-fold CV set 8: class(t) = -(IF(<=(-(+(+([5.748*Var20(t)]|[1.000*Var4(t)])|3.807626)|*( -(1.928774|[1.000*Var7(t)])|-([3.224*Var16(t)]|[1.000*Var8(t)])))| IF(<=(-([3.351*Var16(t)]|[1.000*Var2(t)])|*(1.000000|3.807626))| ThenElse([-5.157*Var20(t)]|+([4.698*Var16(t)]|56.916803))))| ThenElse(-(+(+([1.000*Var16(t)]|-8.636405)|+([5.518*Var16(t)]|-8.636405))| -(-([-5.157*Var20(t)]|[1.000*Var16(t)])|e^([0.222*Var17(t)])))| IF(<=(-([3.351*Var16(t)]|[1.000*Var7(t)])|*(1.000000|3.807626))| ThenElse(+([5.518*Var16(t)]|102.747052)|+([1.000*Var20(t)]|56.916803)))))| IF(>=(-(3.807626|+(+([1.000*Var15(t)]|[1.000*Var11(t)])|+([1.000*Var7(t)]| [-5.157*Var20(t)])))|Log(/(e^(56.916803)|Sqrt([4.697*Var2(t)]))))| ThenElse(-(-(3.807626|*([3.224*Var16(t)]|5.880540))|Cos(+([4.698*Var16(t)] |1.000000)))|*(/(+(3.464115|[1.000*Var4(t)])|+([1.000*Var4(t)]|1.928774))|+( [4.698*Var16(t)]|Sig([5.748*Var20(t)])))))) Thresholds: [36.375; 83.275] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 143 | 11 | 3 | Est. [0] | 16 | 1 | 3 | Class [1] | 6 | 317 | 33 | Class [1] | 0 | 38 | 6 | [2] | 1 | 1 | 5965 | [2] | 0 | 0 | 656 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.15% | 98.61% 10-fold CV set 9: class(t) = +(+(IF(>=(^(Log([3.598*Var20(t)])|+([2.767*Var7(t)]|[1.000*Var12(t)]))| Log([2.368*Var16(t)]))|ThenElse(IF(>=([2.368*Var16(t)]|35.377930)| ThenElse(-21.656405|28.887860))|+(+([1.000*Var17(t)]|-3.329153)|+ ([0.247*Var2(t)]|-3.329153))))|IF(>=(+(+([1.000*Var6(t)]|28.887860)|+ ([2.368*Var16(t)]|[1.000*Var10(t)]))|*(-([0.861*Var16(t)]|[1.000*Var3(t)]) |[1.000*Var18(t)]))|ThenElse(IF(>=([2.368*Var16(t)]|49.112689)|ThenElse( 22.857204|49.112689))|-([3.484*Var18(t)]|+([1.000*Var18(t)]|-5.595520)))))| +(IF(<=(-([2.368*Var16(t)]|/(1.182745|[1.000*Var17(t)]))| +([1.000*Var8(t)]|[1.000*Var17(t)]))|ThenElse(Sin(Sig(-21.656405))| IF(<=(35.377930|[3.722*Var20(t)])|ThenElse([0.894*Var16(t)]|-21.656405))))| IF(>=(^(-([1.000*Var18(t)]|[1.000*Var2(t)])|+([2.279*Var7(t)]| [1.000*Var4(t)]))|Log([2.368*Var16(t)]))|ThenElse(IF(>=([0.861*Var16(t)]| 22.857204)|ThenElse([2.279*Var7(t)]|22.857204))| IF(<=(35.377930|[3.598*Var20(t)])|ThenElse([0.247*Var2(t)]|-21.656405)))))) Thresholds: [34.225; 75.6] TRAINING TEST Orig. -> | [0] | [1] | [2] | Orig. -> | [0] | [1] | [2] | ----------|-----|-----|------| ----------|-----|-----|-----| Est. [0] | 145 | 0 | 3 | Est. [0] | 17 | 0 | 1 | Class [1] | 3 | 341 | 21 | Class [1] | 1 | 27 | 6 | [2] | 0 | 0 | 5967 | [2] | 0 | 0 | 668 | ----------|-----|-----|------|------- ----------|-----|-----|-----|------- | 99.58% | 98.89%